
A Hybrid Visualization System 

for Molecular Models 

 
Charles Marion, Joachim Pouderoux, Julien Jomier 
Kitware SAS, France 

Sébastien Jourdain, Marcus Hanwell & Utkarsh Ayachit 
Kitware Inc, USA 

 
Web3D Conference 2013, San Sebastian 



ÅProvide a molecules and proteins visualization tool 

running on every web connected devices (clientôs need) 

 

ÅHeterogeneous world - thankfully 

ïDevices 

ÅPhones, tablet, laptops, netbooks, PC, Mac 

ïBrowsers 

ÅFirefox, Chrome, Safari, IE, Opera é 

 

ÅWebGL support not guaranteed 

Motivation 



Trade Off 

ÅRemote visualization 

ïImages rendered server side and streamed to the client 

ïComputation is carried out on appropriate hardware 

ïNo additional hardware costs, very convenient for users 

ïNo need to download the data 

ïCopyrighted data friendly 

 

Å Local Rendering 

ïDownload/stream dataset from the server 

ïUse the clientôs hardware 

ïRely on mainstream technology 

ïBetter interactive experiment 

 



Technologies Trade Off 

ÅRemote rendering - ParaViewWeb 

ïCan manage large datasets 

ïNo client side constraints 

ïProvide direct support for collaboration 

ïProcessing capabilities 

ïDependent on network performances 

 

ÅLocal rendering - WebGL 

ïNot ideal for big dataset 

ïDependent on the client machine capabilities 

ïSupport is not guaranteed 

 



Hybrid Visualization 

ÅRemote or local rendering policy 

ïSize of the dataset 

ïClientôs browser capabilities 

 

ÅUse local rendering when it is possible 
ïSave computing power on server side 

ïSave bandwidth 

ïLess latency ï improve interactive feedback 

 

ÅTry to provide the same visual experience 
with both technologies 

 



Local Rendering Technologies 

ÅWebGL 

ïEnables web enabled devices to natively access 3D 
content directly from web pages 

ïJavascript bindings to OpenGL|ES 2.0 

ïSupported browser: Chrome, Firefox, Safari, Opera 

 

Åthree.js 

ïEfficient 

ïEasy to use 

ïMany features  

ïLot of examples 

ïActive community 



ÅVisualization Toolkit (VTK) 

ïOpen-Source C++ visualization library 

ïWrapping for Java, Python, C#... 

ïUsed worldwide in different fields of 2D/3D sci-visualization 

ÅParaView 

ïOpen-Source framework and client/server applications 

ïLarge data processing & visualization 

ÅParaViewWeb  

ïCollaborative remote web interface for 3D visualization with 

ParaView as a server 

ïProvide a JavaScript API based on the ParaView scripting 

features and capabilities 

 

Remote Rendering Technologies 





ÅBetter performances 

ïImproved loading time 

ÅUser wants the visualization starts immediately 

ÅParaViewWeb communicates with ParaView through a Python layer 

ÅCreating Python engine & loading libraries is long 

ÅSo we create a pool of PVW sessions 

ÅOriginal data are preprocessed so they can be loaded faster 

 

ïImproved the rendering engine in order to display very large 

models (up to 10M of polygons) on a graphic server 

ÅVTK is mainly based on OpenGL 1.2 

ÅWe developed some new OpenGL 3.0 VTK mappers 

ParaViewWeb Improvements 



ÅBetter streaming performances 

ïPVW used to stream the image flow through the 

HTTP protocol 

ïWe added support for the WebSocket protocol 

ÅBidirectional communication  

ÅLow latency and network overhead 

ÅFaster than AJAX 

ÅSupported everywhere (except old internet explorer versions) 

ÅRemove the number of concurrent connections limitation 

(from 2 to 11) 

ÅSend the messages (string) and the images (binary) 

 

ParaViewWeb Improvements 



Use Case: Molecule Visualization 

ÅDifferent representation mode 

ïBond-and-sticks, liquorice, etc. 

ïFor proteins: ribbon diagrams 

ïShipped in PDB files/PyMol sessions 

 

ÅLocal rendering 

ïBased on Glmol ï itself base on three.js 

 

ÅRemote rendering 

ïVTK had native molecular data model & inefficient 

visualization support 

ïWe created ribbon filter and optimized OpenGL mappers 
 



ÅBall & stick rendering 

ïAtoms are spheres 

ïBonds are cylinders 

ÅDirect glyphing technique would depend on the glyph resolution 

 

ÅRendering technique 

ïImpostors 

ÅRender 1 quad per element 

ÅCamera oriented & shaded in GLSL 

ïInstanced rendering 

ÅWe send on single plane to render all the entities 

ÅPlus element properties (pos, color, orientation) 

 

Large Molecules Rendering 



Experimental Setup Workflow 

Interaction events 

Image req 30x/s 

New images 

Dataset 

New dataset 



Experimental Setup 

ÅServer 

ïLocated in the US 

ïCPU: Intel Xeon E5620 ï 12 GB RAM 

ïGPU: Nvidia 660Ti - 2GB GRAM 

ïEmbeds a Midas data server 

 

ÅClients 

ïLocated in France 

ïChrome (Desktop) 

ïInternet Explorer 7 

ïChrome (Android) 

 



Results 

Small Molecule Large Molecule 

WebGL 60 fps N/A 

ParaViewWeb 
(HTTP protocol) 

4 fps 4 fps 

ParaViewWeb 
(WebSocket protocol) 
 

17 fps 13fps 



Interactive Science Publishing 
ÅNow available on Science Direct (Elsevier) 

ÅEnhance traditional publishing with  
interactive 3D content 

 

http:// www.sciencedirect.com/science/article/pii/S0969212612004121  


