Compressed Binary Encoding
X3D CBE

“I could be bounded in a nutshell, and count myself a king of infinite space…”
William Shakespeare, *Hamlet*, Act 2, Scene 2
Contents

Chapter Overview and Concepts

X3D Nodes and Examples

Additional Resources

Chapter Summary and Suggested Exercises

References
Chapter Overview
X3D Compressed Binary Encoding (CBE)

Call for Contributions Workshop

Web3D 2013 Conference

San Sebastian Spain
19 June 2013
Workshop objective

- 3D graphics compression technology continues to steadily improve. The Web3D Consortium has issued an X3D Compressed Binary Encoding Call for Contributions.
- We are looking for component technologies that can help improve the current X3D Compressed Binary Encoding Standard.
- Geometric or information compression technologies are of particular interest.
- Our goal is to produce a revision in 2013.
Workshop agenda

• Introductions
• Project summary and progress updates
 • Existing Compression for X3D and VRML97
 • Polygon Reduction and Geometric Compression
 • Data-Centric Binary Encodings, Network Streaming
 • X3D Implementations and Benchmark Testing
• Quicklooks at new candidate technologies, both proposed and presented at conference
• Next steps, group plans, and timeline for continues progress
Workshop speakers

- Web3D Strategies and Liaisons
 - Nicholas Polys and Anita Havele
- X3D Compressed Binary Encoding (CBE)
 - Don Brutzman
- MPEG4 Capabilities and Plans
 - Marius Preda
- Khronos Activities, glTF Transmission Format
 - Neil Trevett
Workshop speakers 2

- MPEG4 Capabilities and Plans
 - Marius Preda
- Khronos Activities, glTF Transmission Format
 - Neil Trevett
- Multi-View X3D Binary Transmission
 - Peter Schickel
- Fraunhofer Technical Capabilities and Plans
 - Johannes Behr
Workshop Focus

Call for Contributions: X3D Compressed Binary Encoding (CBE)
X3D Compressed Binary Encoding Call For Contributions

Overview

Motivation Merits of the X3D Graphics standard include broad generality for many 3D applications. Lots of work has already been accomplished using the X3D Compressed Binary Encoding (CBE) standard. X3D has numerous coherent approaches already available that meet author requirements for a general Web-based 3D transmission format. We are working to demonstrate and standardize multiple interoperable improvements in 2013.

Approach We are looking for component technologies that can help improve X3D CBE standard. Our goal is to produce a revision in 2013. This standard has two parts:

- 3D graphics compression technology continues to improve steadily. The Web3D Consortium wants to enable progress to interoperate compatibly.
- World Wide Web Consortium (W3C) adoption of the Efficient XML Interchange (EXI) Recommendation makes the possibility of a new X3D encoding appealing.
- Additional technical approaches that might apply to all X3D encodings (something like a 3dTransmissionFormat node) are also of interest

We want to emphasize that each individual contribution is not expected to provide an overall comprehensive solution to all Web-compression challenges. Rather, the X3D Working Group is looking for additional technical capabilities that have the potential to work well together within our proven framework. If your capability might fix into this rich mix, please let us know!
Compressed binary encoding

Two types of compression for .x3db encoding

- XML-centric ISO Fast Infoset
- Geometry-centric for coplanar polygons, quantization of points, colors & normals, etc.

Java3D (Deering) algorithms are default for geometry compression

Alternate geometry compression is allowed... however better baselines are possible

Implementations: XIOt, Xj3D, Instant Reality
X3D CBE Call for Contributions

• Prior work is essential, useful and relevant.
 • First-generation X3D Compressed Binary Encoding Request For Proposals (RFP) from August 2003 illustrates this steady evolution.
 • The first-generation process successfully created the current X3D CBE International Standard.
 • This provides a flexible framework for further contributions
X3D CBE Call for Contributions

• All submitters must meet certain requirements prior to consideration.
 • Primary: Web3D Intellectual Property Rights (IPR) protections for X3D specification.
 • Patented technologies can be considered, but only when eventual use will be royalty free for X3D use (if eventually accepted).
 • Submitters can restrict access to patented submissions during member-only working group review, if desired.
CBE Requirements (from 2003)

- X3D Interoperability
- Interoperability
- Multiple, separable data types
- Processing performance
- Ease of implementation

- Retrieval, streaming
- Authorability
- Compression
- Security
- Bundling
- Intellectual Property Rights (IPR)
Existing Compression Capabilities for X3D

• Solid foundation exists to continue progress
 • Approved ISO standard Compressed Binary Encoding (CBE) for X3D
 • Based on ISO Fast Infoset (FI) for XML compression, Java3D geometric compression
 • Optional, alternative gzip compression and MIME Type definitions for X3D.
• XML encoding (.x3dz/.x3d.gz), ClassicVRML encoding (.x3dvz/.x3dv.gz) and Compressed Binary encoding (.x3db.gz) file extensions.
Existing Compression Capabilities for VRML97

• Optional, alternative gzip compression
 • Original compression technique of applying gzip to .wrl compressed VRML97 files was called .wrz.
 • This emerged as a common practice when gzip was originally used. No formal specification of .wrz or corresponding mime type was produced.
 • Occasionally authors might also gzip .wrl files while retaining the .wrl file extension.
Critical areas of interest

• Polygon Reduction & Geometric Compression
• Data-Centric Binary Encodings
• Network Streaming
• X3D Implementations & Benchmark Testing
• Looking Ahead – Next Steps
X3D Binary Capabilities & Plans

- X3D Binary Compression Capabilities & Plans updates are maintained online.
- X3D solutions currently support a wide range of author requirements.
- Further improvements and standards-based partnerships are possible for achieving broader industry interoperability.
- We seek next-generation improvements that further advance the technical capabilities of the X3D Graphics International Standard.
Presentation

Web3D Consortium Strategies

Nicholas Polys, Web3D President

Anita Havele, Executive Director
Concepts

X3D Compressed Binary Encoding (CBE)
X3D CBE Topics

- X3D CBE Call for Contributions
- X3D CBE Specification quicklook
 - Composition framework matches all X3D encodings
 - Node and field compressors
 - CAD Distillation Filters: repeated refinement as X3D
- Geometric compression algorithms
 - Many, we are looking for best combination
- Information/data compression algorithms
 - Fast Infoset (FI), Efficient XML Interchange (EXI)
 - XML security: encryption, digital signature
X3D Specification is equivalently defined for all file encodings and programming APIs.
X3D Compressed Binary Encoding

Matched functional capability of X3D encodings
 • XML .x3d, ClassicVRML .x3dv, CBE .x3db

Combines two types of compression
 • Geometric compression: polygon reduction, flattening/merging, representation techniques using Java3D compression (Deering algorithms)
 • Information-theoretic compression using XML-based ISO standard Fast Infoset (FI)

Web3D Consortium, ISO approval late 2010
 • Now aligning three independent implementations
 • Considering W3C Efficient XML Interchange (EXI) as likely future addition to Fast Infoset
X3D compression algorithm
X3D decompression algorithm
.x3db CBE Implementations

XIOT : X3D Input/Output Tool library
 • http://forge.collaviz.org/community/xiot
 • Open source C++
 • Collaviz Remote Collaborative Visualizer project

Xj3D toolkit
 • Open source Java

Other X3D browsers sometimes experiment
Improved online test suite needed
Efficient XML Interchange (EXI)

W3C XML Binary Characterization
 • Established common needs among hard use cases

W3C EXI Recommendation: approved
 • http://www.w3.org/XML/EXI

Technical approach: aligns well with X3D XML
 • Better compaction + decompression speedup
 • Type aware, schema-informed or not
 • Adaptive tokenization, compression tables
 • Can stabilize on a document type or further refine based on statistical analysis of corpus
Example: EXI compression

EFFICIENT XML INTERCHANGE (EXI) COMPRESSION AND PERFORMANCE BENEFITS: DEVELOPMENT, IMPLEMENTATION AND EVALUATION

<MOTIVATION>
Compact & Efficient XML
Better Compression than other Techniques with Binary Data Binding

Bandwidth Maximization / Deepening The Web
Extends XML use to Low-bandwidth, High-Volume Domains

Net-Centric Warfare Requires XML
- Every Sailor and Soldier is a Sensor (Low Bandwidth mobile edge)
- System of Systems Interoperability (the DoD Information Warfare vision)

Why Not GZip
- Because it Doesn’t Address Processing Efficiencies
- Better Compression can be Achieved for XML

<SOLUTION>
Standardized Compact And Efficient Binary Xml Format: Efficient XML Interchange (EXI)
- Both commercial and open-source implementations available

W3C Endorsed
- Up to Hundreds of Times Smaller. Faster than Native XML
- 100% Compatible with XML, Including Schema-based, Free Form or Multiple-Namespace Hybrid XML

<CONCLUSIONS>
EXI Deliver Statistically Significant XML Improvements

EXI has DoD Specific Expectation of Doubling Bandwidth Potential

EXI compared to GZip (standard compression) in the long run average is 42% of GZip = 116% increase in bandwidth potential for DoD

773 XML examples compared in the W3C EXI Test Corpus hosted at NPS

Analysis of Common Compression Techniques at 99% alpha factor
EXI (schema and schemaless) deliver statistically smaller files

Application To DoD
- DoD is Heavily Invested in XML
- DoD Files are often Numerically Intensive
- DoD Files are often Very Large
- Next Generation of Devices Supported
- DoD Tactical Networks are Bandwidth Limited

World Wide Web Consortium Member Created
"Best of Breed Solution"

Contact:
Don Brutzman, brutzman@nps.navy.mil, 831.656.2149
Sheldon L. Snyder, slsnyder@nps.edu
EXI implementations

http://www.w3.org/XML/EXI/#implementations

- Exificent, Siemens AG, open source
- Efficient XML, AgileDelta, commercial
- EXIP, Luleå University, open source
- OpenEXI, Fujitsu and NPS, open source
Web Security standards are compatible

X3D’s XML and Compressed Binary encodings allow use of W3C’s Security recommendations

- XML Encryption
demonstrated in NPS thesis, X3D Basic examples, X3D-Edit
- XML Digital Signature (for authentication)
- XML Public key infrastructure

Security based on Web standards lets authors and companies protect their 3D model assets

- Rather than “security through obscurity”
- X3D-Edit support uses Apache libraries
Example: digital signature, authentication

DOCUMENT-BASED MESSAGE-CENTRIC SECURITY USING XML AUTHENTICATION AND ENCRYPTION FOR COALITION AND INTERAGENCY OPERATIONS

Master's Thesis, Naval Postgraduate School, Monterey California USA, September 2009

MOTIVATION

Diverse often-changing members of multinational or multi-agency coalitions cannot share sensitive data over shared networks because their security policies always differ widely. Document-based security via international Web-based standards is possible using XML Digital Signature, XML Encryption, and Efficient XML Interchange (EXI) compression. Network independence provides a globally interoperable means for secure exchange of messages among trusted partners.

XML Digital Signature provides message integrity, sender authentication, and sender non-repudiation of the message fragment or the document by default. XML Encryption provides confidentiality.

The appropriate application of Web-based XML security provides discretionary access control (DAC) to support the secure dynamic exchange of information, even when used between entities employing dissimilar systems via an insecure transport. The strength of the encryption is simply dependent upon the encryption algorithm chosen.

Common use of international standards promotes trust between organizations because each participant is responsible for choosing and supporting independent sets of tools based upon consistent standards.

RESEARCH QUESTIONS

This work addresses the following questions.

1. Can an XML document that includes XML Encryption and XML Signature Elements provide adequate security commensurate with the security level of the data contained therein?
2. Do the standardized XML Signature, XML Encryption and authentication recommendations satisfy Information Assurance (IA) requirements within the construct of Discretionary Access Control (DAC) while transmitting or sharing data, including different gradients within unclassified classification levels for which each group of users are authorized to view?
3. Can an XML document or message fragment be restricted to showing the appropriate level of allowed data access by automatically checking the credential store local to the machine from which it is being accessed?
4. Do these techniques further apply when used in Web Services and real-time XML chat messaging, as well as 3D visualization and simulation streaming?
5. Can document-level XML security be compatibly applied within both current and projected restrictions and best practices governing coalition and multi-agency operations?

METHOD

Protocol Analysis

Evaluation of protocols, ordering, and methodology is based upon W3C Recommendations for XML security to provide adequate protection for unclassified documents.

Interoperability Testing

Testing was conducted for encrypted and signed XML messages across multiple platforms to ascertain its validity using a variety of XML languages. Document exchange included Linux, Windows and MacOS X operating systems using Internet Explorer, Firefox, and Safari web browsers.

EXEMPLAR

A practical usage of XML Digital Signature, XML Encryption, and Document-Level XML Authentication is demonstrated within exemplar scenarios and use cases for multinational and multi-agency operations.

CONCLUSIONS

XML security using XML Digital Signature, XML Encryption, EXI compression and XML authentication provides a viable international solution for securely exchanging unclassified information. This method can work dynamically across an insecure transport between joint, coalition, multinational and multi-agency organizations. This work can be applied across a variety of transport protocols including http/https, ssh/vsftpd, web services and XMPP chat sessions.

Contact Information

Don Brutzman, Ph.D.
brutzman@nps.navy.mil

Don McGregor
mgrego@nps.edu

Jeffrey S. Williams
jeffrey.williams2@navy.mil
X3D compressed binary algorithm and XML Security

X3D compressed binary uses Canonical X3D form
 • Strict formatting rules so that files with identical format can be shown to match

Canonical form enables use of XML Security
 • XML Encryption
 • XML Digital Signature (for author authentication)
Computer Aided Design (CAD)

Executive Summary:

The X3D CAD Working Group is now in its third generation of development effort. We are developing and demonstrating best practices for exporting CAD models to X3D for Web applications.

Billions of dollars are invested in CAD and technical product information. But 3D data created with CAD applications, is difficult to share with other users across the enterprise. Integrating 3D data, such as CAD engineering files, into other applications for sales & marketing or training is time consuming and difficult.

The open standards X3D CAD initiative will let customers access and repurpose complex 3D and technical data and seamlessly integrate it into other common desktop applications across the enterprise. Professionals outside of CAD and engineering will be able to access this graphical data, including animation, materials and textures, to increase productivity, cut costs and generate new revenue streams. This increases the value of the CAD data and reduces costs in other areas. Applications include customer visualization, design communication, training, technical documentation, sales and marketing, and customer support.

The CAD3D Working Group has defined a file format and data transfer process. The format, CAD Distillation Format (CDF), enables translation of CAD data to an open format for publishing and interactive media. The process includes an open framework pipeline that incorporates tools for decimation of surfaces to constructs that are more common in the non-CAD environments.
X3D Conversion Process for CAD Models

CAD model issues
- Large file sizes, unwieldy
- Proprietary formats
- "Locked in" tool chain, changing and expensive
- Licensing renewal often needed over long term
- Company building CAD tool may go out of business or get acquired and shut down by another
- Engineering max detail, specialized metadata
- Specialized viewers, plugins
- Hard to convert
- Hard to reuse, compose, integrate in applications
- Original purchasers of model data usually unable to reuse what they own

Macro Parametric History
- List of author actions, similar to Do/Undo list
- Controlled vocabulary matching ISO STEP
- About 50 operators
- Constructive solid geometry (CSG)
- Build meshes, surfaces via CAD geometry engine
- Interoperability despite differences in CAD tools

Convert history log, not engineering details
- Retain CAD model product structure
- Use CAD engine or API (e.g. ACIS) to produce conversion
- Compute geometry by converting CSG operators to NURBS
- Polygonal mesh tessellation

Deployable, reusable model
- Can include metadata of interest
- Signable and encryptable via XML Security

X3D Compressed Binary Encoding
- Geometric data reduction
- Information data reduction
- Secure

Widely deployable for many purposes
X3D CAD Model Data Reduction

File Size

Source

Unlocking CAD
Macro parametric history approach reconstructs 3D model geometry

Geometry reduction
- Nodes, attributes
- Lossy, lossless
- Metadata settings

Data reduction
- Fast Infoset (FI)
- Efficient XML Interchange (EXI)
- XML Security

CAD distillation filter (CDF)
X3D-to-X3D data reduction

CAD Model Data
Macro parametric history
Metadata

.X3d
X3D polygon meshes, shapes, NURBS
CAD Distillation Filter reduction
X3D surface fitting, possibly B-REPS

.Metadata: original + compression settings

X3D Compressed Binary Encoding

Processing algorithms
X3D “next specification” strategies

- X3D version 3.3: complete
- X3D version 3.4 plans
 - Evolutionary improvements, proven X3D architecture
 - Working groups defining future goals, requirements
- X3D version 4.0 plans
 - Development efforts are considering potentially major changes, additions to the baseline X3D architecture
 - Adapt, show maximum practical backward compatibility
 - Major technologies under consideration:
 - HTML5/Declarative 3D/X3DOM
 - Augmented Reality Continuum (ARC)
Discussion is productive

- Please contact us or respond publicly if additional technologies need consideration
- X3D futures planning is
 - Topic of 1st Wednesday telecon monthly
 - Web3D Consortium member-decided activity
- All feedback is welcome
 - Sooner or later, all results get public review before Web3D approval and ISO review

Thanks for considering the possibilities!
Presentation

MPEG4 Capabilities and Plans

Marius Preda, SC 29
Presentation

Khronos Activities and glTF Transmission Format

Neil Trevett, Khronos Group
Presentation

Multi-view X3D Binary Transmission

Peter Schickel, BitManagement
Presentation

Fraunhofer Technical Capabilities and Plans

Johannes Behr
X3D Nodes and Examples
HAnimJoint node
Additional Resources
Additional Resources
Chapter Summary
Chapter Summary
Suggested exercises
References
References

X3D: Extensible 3D Graphics for Web Authors
by Don Brutzman and Leonard Daly, Morgan Kaufmann Publishers, April 2007, 468 pages.

- Chapter 3, Grouping Nodes
- http://x3dGraphics.com
- http://x3dgraphics.com/examples/X3dForWebAuthors

X3D Resources

- http://www.web3d.org/x3d/content/examples/X3dResources.html
References 2

X3D-Edit Authoring Tool
 • https://savage.nps.edu/X3D-Edit

X3D Scene Authoring Hints
 • http://x3dgraphics.com/examples/X3dSceneAuthoringHints.html

X3D Graphics Specification
 • http://www.web3d.org/x3d/specifications
 • Also available as help pages within X3D-Edit
References 3

- http://www.wiley.com/legacy/compbooks/vrml2sbk/cover/cover.htm
- http://www.web3d.org/x3d/content/examples/Vrml2.0Sourcebook
- Chapter _ -
Contact

Don Brutzman

brutzman@nps.edu

http://faculty.nps.edu/brutzman

Code USW/Br, Naval Postgraduate School
Monterey California 93943-5000 USA
1.831.656.2149 voice
CGEMS, SIGGRAPH, Eurographics

The Computer Graphics Educational Materials Source (CGEMS) site is designed for educators

- to provide a source of refereed high-quality content
- as a service to the Computer Graphics community
- freely available, directly prepared for classroom use
- http://cgems.inesc.pt

X3D for Web Authors recognized by CGEMS! 😊

- Book materials: X3D-Edit tool, examples, slidesets
- Received jury award for Best Submission 2008

CGEMS supported by SIGGRAPH, Eurographics
Creative Commons open-source license

http://creativecommons.org/licenses/by-nc-sa/3.0
Open-source license
for X3D-Edit software and X3D example scenes

http://www.web3d.org/x3d/content/examples/license.html

Copyright (c) 1995-2013 held by the author(s). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the names of the Naval Postgraduate School (NPS) Modeling Virtual Environments and Simulation (MOVES) Institute nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Compressed Binary Encoding
X3D CBE

“I could be bounded in a nutshell, and count myself a king of infinite space...”
William Shakespeare, Hamlet, Act 2, Scene 2
Contents

Chapter Overview and Concepts

X3D Nodes and Examples

Additional Resources

Chapter Summary and Suggested Exercises

References
Chapter Overview
X3D Compressed Binary Encoding (CBE)

Call for Contributions Workshop

Web3D 2013 Conference

San Sebastian Spain
19 June 2013
Workshop objective

• 3D graphics compression technology continues to steadily improve. The Web3D Consortium has issued an X3D Compressed Binary Encoding Call for Contributions

• We are looking for component technologies that can help improve the current X3D Compressed Binary Encoding Standard

• Geometric or information compression technologies are of particular interest.

• Our goal is to produce a revision in 2013
Workshop agenda

- Introductions
- Project summary and progress updates
 - Existing Compression for X3D and VRML97
 - Polygon Reduction and Geometric Compression
 - Data-Centric Binary Encodings, Network Streaming
 - X3D Implementations and Benchmark Testing
- Quicklooks at new candidate technologies, both proposed and presented at conference
- Next steps, group plans, and timeline for continues progress
Workshop speakers

- Web3D Strategies and Liaisons
 - Nicholas Polys and Anita Havele
- X3D Compressed Binary Encoding (CBE)
 - Don Brutzman
- MPEG4 Capabilities and Plans
 - Marius Preda
- Khronos Activities, glTF Transmission Format
 - Neil Trevett
Workshop speakers 2

- MPEG4 Capabilities and Plans
 - Marius Preda
- Khronos Activities, glTF Transmission Format
 - Neil Trevett
- Multi-View X3D Binary Transmission
 - Peter Schickel
- Fraunhofer Technical Capabilities and Plans
 - Johannes Behr
Workshop Focus

Call for Contributions: X3D Compressed Binary Encoding (CBE)
Compressed binary encoding

Two types of compression for .x3db encoding
- XML-centric ISO Fast Infoset
- Geometry-centric for coplanar polygons, quantization of points, colors & normals, etc.

Java3D (Deering) algorithms are default for geometry compression
Alternate geometry compression is allowed... however better baselines are possible
Implementations: XIOT, Xj3D, Instant Reality

X3D CBE Call for Contributions

- Prior work is essential, useful and relevant.
 - First-generation X3D Compressed Binary Encoding Request For Proposals (RFP) from August 2003 illustrates this steady evolution.
 - The first-generation process successfully created the current X3D CBE International Standard.
 - This provides a flexible framework for further contributions
X3D CBE Call for Contributions 2

- All submitters must meet certain requirements prior to consideration.
 - Primary: Web3D Intellectual Property Rights (IPR) protections for X3D specification.
 - Patented technologies can be considered, but only when eventual use will be royalty free for X3D use (if eventually accepted).
 - Submitters can restrict access to patented submissions during member-only working group review, if desired.
CBE Requirements (from 2003)

- X3D Interoperability
- Interoperability
- Multiple, separable data types
- Processing performance
- Ease of implementation
- Retrieval, streaming
- Authorability
- Compression
- Security
- Bundling
- Intellectual Property Rights (IPR)
Existing Compression Capabilities for X3D

- Solid foundation exists to continue progress
 - Approved ISO standard Compressed Binary Encoding (CBE) for X3D
 - Based on ISO Fast Infoset (FI) for XML compression, Java3D geometric compression
 - Optional, alternative gzip compression and MIME Type definitions for X3D.
- XML encoding (.x3dz/.x3d.gz), ClassicVRML encoding (.x3dvz/.x3dv.gz) and Compressed Binary encoding (.x3db.gz) file extensions.
Existing Compression Capabilities for VRML97

- Optional, alternative gzip compression
 - Original compression technique of applying gzip to .wrl compressed VRML97 files was called .wrz.
 - This emerged as a common practice when gzip was originally used. No formal specification of .wrz or corresponding mime type was produced.
 - Occasionally authors might also gzip .wrl files while retaining the .wrl file extension.
Critical areas of interest

- Polygon Reduction & Geometric Compression
- Data-Centric Binary Encodings
- Network Streaming
- X3D Implementations & Benchmark Testing
- Looking Ahead – Next Steps
X3D Binary Capabilities & Plans

- X3D Binary Compression Capabilities & Plans updates are maintained online.
- X3D solutions currently support a wide range of author requirements.
- Further improvements and standards-based partnerships are possible for achieving broader industry interoperability.
- We seek next-generation improvements that further advance the technical capabilities of the X3D Graphics International Standard.
Presentation

Web3D Consortium Strategies

Nicholas Polys, Web3D President
Anita Havele, Executive Director
Concepts

X3D Compressed Binary Encoding (CBE)
X3D CBE Topics

- X3D CBE Call for Contributions
- X3D CBE Specification quicklook
 - Composition framework matches all X3D encodings
 - Node and field compressors
 - CAD Distillation Filters: repeated refinement as X3D
- Geometric compression algorithms
 - Many, we are looking for best combination
- Information/data compression algorithms
 - Fast Infoset (FI), Efficient XML Interchange (EXI)
 - XML security: encryption, digital signature
X3D Specification is equivalently defined for all file encodings and programming APIs. This is also known as the “honeycomb” diagram for the X3D specification.

Encodings define file formats.

Each Scene Access Interface (SAI) binding is a specific Application Programming Interface (API) to simplify and regularize the consistent creation and use of programming-language objects specifically designed for X3D.

ECMAScript is the formal-specification name for JavaScript.

ECMA was originally named the European Computer Manufacturers Association and is now ECMA International - European association for standardizing information and communication systems. http://www.ecma-international.org
X3D Compressed Binary Encoding

Matched functional capability of X3D encodings
• XML .x3d, ClassicVRML .x3dv, CBE .x3db

Combines two types of compression
• Geometric compression: polygon reduction, flattening/merging, representation techniques using Java3D compression (Deering algorithms)
• Information-theoretic compression using XML-based ISO standard Fast Infoset (FI)

Web3D Consortium, ISO approval late 2010
• Now aligning three independent implementations
• Considering W3C Efficient XML Interchange (EXI) as likely future addition to Fast Infoset

References

Developing Web Applications with COLLADA and X3D, Remi Arnaud and Tony Parisi, 2007
• http://www.khronos.org/collada/presentations/Developing_Web_Applications_with_COLLADA_and_X3D.pdf

Khronos and Web3D Enter Official Cooperation as Mobile & Internet Continue to Converge, 2007
.x3db CBE Implementations

XIOT : X3D Input/Output Tool library
• http://forge.collaviz.org/community/xiot
• Open source C++
• Collaviz Remote Collaborative Visualizer project

Xj3D toolkit
• Open source Java

Other X3D browsers sometimes experiment
Improved online test suite needed
Efficient XML Interchange (EXI)

W3C XML Binary Characterization
- Established common needs among hard use cases
W3C EXI Recommendation: approved
- http://www.w3.org/XML/EXI

Technical approach: aligns well with X3D XML
- Better compaction + decompression speedup
- Type aware, schema-informed or not
- Adaptive tokenization, compression tables
- Can stabilize on a document type or further refine based on statistical analysis of corpus
Example: EXI compression
EXI implementations

http://www.w3.org/XML/EXI/#implementations

- Exificent, Siemens AG, open source
- Efficient XML, AgileDelta, commercial
- EXIP, Luleå University, open source
- OpenEXI, Fujitsu and NPS, open source
Web Security standards are compatible

X3D’s XML and Compressed Binary encodings allow use of W3C’s Security recommendations

- XML Encryption (demonstrated in NPS thesis, X3D Basic examples, X3D-Edit)
- XML Digital Signature (for authentication)
- XML Public key infrastructure

Security based on Web standards lets authors and companies protect their 3D model assets
- Rather than “security through obscurity”
- X3D-Edit support uses Apache libraries

DRM becomes feasible by using the above technologies
- More uses than Hollywood-commercial exist
- See Sun’s DReaM project http://www.openmediacommons.org
Example: digital signature, authentication
X3D compressed binary algorithm and XML Security

X3D compressed binary uses Canonical X3D form
• Strict formatting rules so that files with identical format can be shown to match

Canonical form enables use of XML Security
• XML Encryption
• XML Digital Signature (for author authentication)

X3D security examples, description an references:

• http://www.web3d.org/x3d/content/examples/Basic/Security/X3dSecurityReadMe.html
• http://www.web3d.org/x3d/content/examples/Basic/Security
• World Wide Web Consortium (W3C) Security http://www.w3.org/Security
• XML Encryption http://www.w3.org/TR/xmlenc-core
• XML Signature http://www.w3.org/TR/xmldsig-core
• X3D Canonicalization (C14N)

http://www.web3d.org/x3d/specifications/ISO-IEC-FCD-19776-3.2-X3DEncodings-CompressedBinary/Part03/concepts.html#X3DCanonicalForm

TODO add link to Jeff Williams' thesis
Demanding use case: CAD
X3D Conversion Process for CAD Models

CAD model issues
- model inconsistencies
- Feature based modeling
- Inconsistencies in design and manufacturing
- Parametric model manipulation
- Company-specific CAD model format
- Parametric model
- Model data exchange

Engineering model issues
- Inconsistencies in design and manufacturing
- Parametric model manipulation
- Company-specific CAD model format
- Parametric model
- Model data exchange

Macro Parametric History
- Object-oriented model
- Inconsistencies in design and manufacturing
- Parametric model manipulation
- Company-specific CAD model format
- Parametric model
- Model data exchange

Model History
- Inconsistencies in design and manufacturing
- Parametric model manipulation
- Company-specific CAD model format
- Parametric model
- Model data exchange

Deployment
- Model data exchange
- Company-specific CAD model format
- Parametric model
- Model data exchange

X3D Conversion
- Model data exchange
- Company-specific CAD model format
- Parametric model
- Model data exchange

Wide data web for many purposes
X3D “next specification” strategies

- X3D version 3.3: complete
- X3D version 3.4 plans
 - Evolutionary improvements, proven X3D architecture
 - Working groups defining future goals, requirements
- X3D version 4.0 plans
 - Development efforts are considering potentially major changes, additions to the baseline X3D architecture
 - Adapt, show maximum practical backward compatibility
 - Major technologies under consideration:
 - HTML5/Declarative 3D/X3DOM
 - Augmented Reality Continuum (ARC)
Discussion is productive

- Please contact us or respond publicly if additional technologies need consideration
- X3D futures planning is
 - Topic of 1st Wednesday telecon monthly
 - Web3D Consortium member-decided activity
- All feedback is welcome
 - Sooner or later, all results get public review before Web3D approval and ISO review

Thanks for considering the possibilities!
Presentation

MPEG4 Capabilities and Plans

Marius Preda, SC 29
Presentation

Khronos Activities and glTF Transmission Format

Neil Trevett, Khronos Group
Presentation

Multi-view X3D Binary Transmission

Peter Schickel, BitManagement
Presentation

Fraunhofer Technical Capabilities and Plans

Johannes Behr
X3D Nodes and Examples
HAnimJoint node
Additional Resources
Additional Resources
Chapter Summary
Chapter Summary
Suggested exercises
References
References 1

X3D: Extensible 3D Graphics for Web Authors
by Don Brutzman and Leonard Daly, Morgan Kaufmann Publishers, April 2007, 468 pages.

- Chapter 3, Grouping Nodes
- http://x3dGraphics.com
- http://x3dgraphics.com/examples/X3dForWebAuthors

X3D Resources

- http://www.web3d.org/x3d/content/examples/X3dResources.html
References

X3D-Edit Authoring Tool
• https://savage.nps.edu/X3D-Edit

X3D Scene Authoring Hints
• http://x3dgraphics.com/examples/X3dSceneAuthoringHints.html

X3D Graphics Specification
• http://www.web3d.org/x3d/specifications
• Also available as help pages within X3D-Edit
References 3

 • http://www.wiley.com/legacy/compbooks/vrml2sbk/cover/cover.htm
 • http://www.web3d.org/x3d/content/examples/Vrml2.0Sourcebook
 • Chapter _ -
CGEMS, SIGGRAPH, Eurographics

The Computer Graphics Educational Materials Source (CGEMS) site is designed for educators

• to provide a source of refereed high-quality content
• as a service to the Computer Graphics community
• freely available, directly prepared for classroom use
• http://cgems.inesc.pt

X3D for Web Authors recognized by CGEMS! 😊

• Book materials: X3D-Edit tool, examples, slidesets
• Received jury award for Best Submission 2008

CGEMS supported by SIGGRAPH, Eurographics

From the CGEMS home page:

• http://cgems.inesc.pt

Welcome to CGEMS - Computer Graphics Educational Materials Source. The CGEMS site is designed for educators to provide a source of refereed high-quality content as a service to the Computer Graphics community as a whole. Materials herein are freely available and directly prepared for your classroom.

List of all published modules:

• http://cgems.inesc.pt/authors/ListModules.aspx

CGEMS Editorial Policy:

• http://cgems.inesc.pt/EditorialPolicy.htm
Creative Commons open-source license
http://creativecommons.org/licenses/by-nc-sa/3.0

Attribution-Noncommercial-Share Alike 3.0 Unported
You are free:
* to Share — to copy, distribute and transmit the work
* to Remix — to adapt the work

Under the following conditions:
* Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).

Attribute this work: What does "Attribute this work" mean?

The page you came from contained embedded licensing metadata, including how the creator wishes to be attributed for re-use. You can use the HTML here to cite the work. Doing so will also include metadata on your page so that others can find the original work as well.

* Noncommercial. You may not use this work for commercial purposes.
* Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.

* For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to this web page.
* Any of the above conditions can be waived if you get permission from the copyright holder.
* Nothing in this license impairs or restricts the author's moral rights.
Open-source license
for X3D-Edit software and X3D example scenes

http://www.web3d.org/x3d/content/examples/license.html

Copyright (c) 1995-2013 held by the author(s). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
• Neither the names of the Naval Postgraduate School (NPS) Modeling Virtual Environments and Simulation (MOVES) Institute nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

License available at
 http://www.web3d.org/x3d/content/examples/license.txt
 http://www.web3d.org/x3d/content/examples/license.html

Good references on open source:
